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Abstract: This paper studies the distributed control of spacecraft formation flying with collision avoidance and connectivity
maintenance. Until now, almost all studies do not consider the impact of the spacecraft’s relative position on the communica-
tion graph between spacecraft, instead, merely assume that the communication graph satisfies certain connectivity conditions,
such as connectivity of an undirected graph, strong connectivity of a directed graph, or joint connectivity of a switching graph.
This paper proposes a distributed connectivity maintenance controller to ensure the connectivity of communication graph dur-
ing spacecraft formation flying. First, a dynamic graph based on the relative distance between the spacecraft is employed to
model the real-time communication graph. In addition, two artificial potential functions, respectively, regarded as the repulsive
force and the attractive force, are established to preserve the graph connectivity and avoid the collisions at the same time. A
distributed connectivity preserving control law is proposed to eliminate the computing burden of a single satellite and enhance
the reliability of the spacecraft system. The distributed control algorithm ensures that if the graph is connected at the initial time,
then it will connect in the future. The mass uncertainties are also taken into account for implementation in the complex space
environment. Numerical simulations of the proposed method are presented to show the effectiveness of the distributed controller
during spacecraft formation flying.
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1 Introduction

Spacecraft formation flying (SFF) is defined as the track-

ing or maintenance of a desired relative separation, orien-

tation or position between or among spacecraft [1]. It has

aroused much interests owing to its the obvious advantages

compared with a single traditional monolithic spacecraft,

such as flexibility, reliability, robustness and low fuel con-

sumption [2]. These advantages make SFF being a compet-

itive method to implement synthetic aperture radars, grav-

ity field measurement, space-based interferometers and dis-

tributed satellite architecture. [3–5].

Compared with the monolithic spacecraft, all spacecraft in

formation needs to communicate with each other. Therefore,

one challenge related to SFF is how to design a distributed

coordination controller for SFF [6]. According to the task re-

quirements, formation control methods specify the task into

different behaviors, such as collision avoidance, formation

tracking, formation maintenance and formation reconfigu-

ration [7, 8]. In practical applications, collision avoidance

is the fundamental requirements for formation flying and the

prerequisite for all the other tasks previously mentioned such

as formation maintaining and reconstruction. In literature

[2], the authors presented a behavioral control solution using

the Null-Space Based (NSB) concept for spacecraft forma-

tion reconfiguration and collision avoidance. Zhou et al. pro-

posed a finite-time coordination control scheme with NSB

concept for SFF to avoid the collision [9]. In this work, the

controller can accomplish the formation reconfiguration task

in unknown obstacle environments without using an accurate

mathematical model. Hu et al. studied nonlinear adaptive

feedback control of SFF with avoiding obstacles and main-

taining the formation configuration [10]. Ref. [11] presented

a tracking control scheme of a virtual leader for spacecraft

formation flying with a decentralized collision avoidance

scheme. The configuration space for a spacecraft is the Lie

group SE(3), which is the set of positions and orientations in

three-dimensional Euclidean space. Unlike the model used

in [11], Ref. [12] investigates the collision-free distributed

coordination control of six-DOF SFF by dual quaternions.

Another challenge in SFF is how to model and con-

struct the communication graph in SFF, as it is time-varying

and impacted by the relative distance between spacecraft.

However, almost all studies assume that the communication

graphs are connected during formation maintenance and for-

mation reconfiguration. Practically, these assumptions are

hard to meet. Connectivity maintenance for single and sec-

ond order system had been studied in [13, 14]. However,

these results can not directly be applied to nonlinear space-

craft dynamics. The main purpose of this paper is to pro-

pose a distributed coordination control for SFF with collision

avoidance and connectivity maintenance. Firstly, suppose

the sensing region of the spacecraft is a sphere and then the

communication graph is constructed dynamically according

to the relative distance between spacecraft. The collision re-

gion is also modeled as a sphere and involved in the con-

struction of the graph. In addition, two artificial potential

functions, including attraction function and repulsion func-

tion, are presented to provide the attractive force and repul-

sive force. Moreover, a control law based on artificial func-

tion and certainty equivalence principle are designed. Fi-

nally, LaSalle’s invariance principle was employed to ensure

the algorithm can not only preserve the connectivity of the

graph and avoid the collisions between all spacecraft.

The paper is organized as follows: Section 2 states the

relative dynamics of spacecraft formation system and some

notions about algebra graph theory. The potential functions

and control method is proposed in Section 3. Numerical sim-

ulations are presented in Section 4 to demonstrate various

features and effectiveness of the proposed control methods.

Finally, the paper is completed with some concluding com-

ments in Section 5.
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2 Problem statement

In this paper, we mainly study how to maintain connectiv-

ity of the communication graph and avoid collisions between

all spacecraft during formation reconfiguration. This section

provides the relative dynamics of spacecraft and some no-

tions of algebra graph theory.

2.1 Spacecraft dynamics
It is assumed that all spacecraft are rigid and the refer-

ence spacecraft transits in an elliptical orbit. The reference

frame, denoted by Fr, has its origin at the centroid of the

reference spacecraft. The Xr axis points from the earth cen-

ter to the reference spacecraft, the Zr axis is perpendicular

to the reference orbit plane, and the Yr axis can be obtained

according to the right-hand rule. Noting that throughout this

paper, except special explanation, every three-dimensional

column vector can be written as the decomposition form

l3×1 = [lx, ly, lz]
T

to represent the component of each axis

with respect to the reference orbital coordinate system. Con-

sider a system with N spacecraft, ρi and vi denote the posi-

tion and the velocity of the i-th spacecraft in the formation

with respect to the reference orbit frame, respectively. Then,

the relative dynamics can be described by [15]

ρ̇i =vi

miv̇i =Ci(θ̇c)vi +Di(θ̈c, θ̇c, ||ri||)ρi + ni(||ri||, ||rc||) + fi

(1)

where

Ci(θ̇c) = 2miθ̇c

⎡
⎣ 0 1 0
−1 0 0
0 0 0

⎤
⎦ (2)

Di(θ̈c, θ̇c, ri) = −mi
μ

r3i
I3×3 +mi

⎡
⎣ θ̇2c θ̈c 0

−θ̈c θ̇2c 0
0 0 0

⎤
⎦ (3)

ni(||ri||, ||rc||) = μmi

[
− ||rc||
||ri||3 +

1

||rc||2 , 0, 0
]T

(4)

and mi is the mass of the i-th spacecraft, θc is the true

anomaly of the reference spacecraft, ||rc|| (|| · || presents the

Euclidean norm of a vector throughout this paper) denotes

the distance between the centroid of the reference space-

craft and the Earths center, μ is the gravitational constant

of the Earth, fi is the control force vector of the i-th space-

craft, ||ri|| =
√
(||rc||+ ρix)2 + ρ2iy + ρ2iz is the distance

between the centroid of the i-th spacecraft and the Earths

center.

Assumption 1. Since the mass change of the spacecraft in
formation is very small, the mass mi is assumed constant but
unknown.

2.2 Algebraic graph theory
During formation flying, each spacecraft receives the

states of other spacecraft through communication graph

(through data transmission and measurement equipment)

to achieve formation task. The communication graph be-

tween all spacecraft is described by graph theory in this

paper. This subsection presents some notions of algebraic

graph theory [16]. A weighted graph G is an ordered triple

(V, E , A(G)) consisting a vertex set V = {1, 2, . . . N}, an

edge set E ⊂ V × V and a weighted adjacency matrix

A = [aij ] ∈ R
n×n. The edge (i, j) ∈ E if and only if the

vertex j can get information from vertex i. In this situation,

the i-th and j-th spacecraft are called adjacent. Graph G is

said to be undirected if for any edge (i, j) ∈ E , (j, i) ∈ E .

The set of neighbors of the i-th spacecraft is denoted by

Ni = {j ∈ V , (i, j) ∈ E}. A path of length m in G is given

by a sequence of distinct vertices vi0 , vi1 , . . . , vim such that

for k = 0, 1, . . . ,m − 1, the vertices vikand vik+1
are adja-

cent. The graph G is called a connected graph if there is a

path for every pair of vertices in V . The adjacency matrix

A(G) of G is defined such that aij = aji is a positive weight

if (i, j) ∈ E(G), otherwise aij = 0. Another important ma-

trix of graph G is the Laplacian matrix L = [lij ] ∈ R
n×n,

which is defined as: if i = j, lij =
∑N

j=1 aij , otherwise

lij = −aij .

Lemma 1. The Laplacian matrix L is symmetric and posi-
tive semidefinite [16].

2.3 Control objective
By utilizing the artificial function, we aim to design a dis-

tributed control law for each spacecraft to reconfigure all

spacecraft to the desired relative position even the mass of

spacecraft is unknown. Meanwhile, the proposed methods

can maintain the connectivity of communication graph and

avoid the collisions between all spacecraft at the same time.

Connectivity maintenance means keeping the communi-

cation graph of the spacecraft system connected at any time.

Collision avoidance is defined as avoiding collisions be-

tween spacecraft. Figure 1 shows the sectional drawing of

the sensing sphere region with radius Δ and the collision

sphere region with radius δ of spacecraft i. Spacecraft j is

on the boundary of collision region and spacecraft l is out

of the sensing region of spacecraft i. These two spacecraft

have no communication with spacecraft i. Spacecraft k is

in the sensing region and out the collision region of space-

craft i, therefore, they can communicate with each other. The

purpose of connectivity maintenance control is to preserve

spacecraft like k being in the sensing region of spacecraft

i. The collision avoidance control is to avoid the distance

between any two spacecraft smaller than δ.

3 Main results

3.1 Dynamic graph construction
The dynamic graph G(t) = (V, E(t)) is generated accord-

ing to the positions of all spacecraft. Let ε ∈ (Δ − δ,Δ) be

a given constant. The time-varying edge set is defined as

(i) initial edges are generated by E(0) = {(i, j)| ||ρij || ∈
(δ + ε,Δ− ε), i, j ∈ V}.

(ii) if (i, j) /∈ E(t−) and ||ρij || ∈ (δ+ ε,Δ− ε), then (i, j)
is added to E(t).

(iii) if (i, j) ∈ E(t−) and ||ρij || > Δ − ε, then (i, j) is

deleted from E(t).
(iv) if (i, j) ∈ E(t−) and ||ρij || < δ + ε, then (i, j) is

deleted from E(t).
Remark 1. From the upper process, we know that the pur-
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Fig. 1: Sectional drawing of the sense and collision region

pose of step (ii) is to add an edge to the dynamic graph and

step (iii) and step (iv) are to delete an edge. In fact, the latter

two steps will not occur under the distributed connectivity

maintenance control laws proposed in this paper.

The former procedure can be represented by a time-varying

indicator matrix σij(t) ∈ {0, 1}, which is defined as

σij(0) =

{
1, if ||ρij(0)|| ∈ (δ + ε,Δ− ε), i, j ∈ V}
0, otherwise.

(5)

σij(t) =

⎧⎪⎨
⎪⎩
1, if (σij(t

−) = 1) ∩ (||ρij(t)|| ∈ (δ,Δ))

∪ (σij(t
−) = 0) ∩ (||ρij(t)|| ∈ [δ + ε,Δ− ε])

0, otherwise.
(6)

With the indicator matrix, the elements of the dynamic adja-

cency matrix A(t) of dynamic graph G(t) is given as

aij(t) = σij(t) · wij (7)

Assumption 2. It is assumed that each spacecraft has the
same sensing radius Δ to ensure the communication edge,
and the same minimum distance δ to avoid collisions.

Assumption 3. The desire distance of formation flying sat-
isfies

dij ∈ (δ,Δ), and dij = dji, for all (i, j) ∈ E . (8)

The minimum distance δ in Assumption 2 can be different

for each spacecraft, and this condition does not effect the

results in this paper. However, the sensing radius Δ needs to

be equal for all spacecraft. Equal sensing radius implies the

communication graph is an undirected graph.

Assumption 4. Suppose no collision has happened be-
fore the initial time, which implies the distance between all
spacecraft are greater than δ+ε, i.e. ||ρij || > δ+ε, ∀ i, j =
1, . . . , N .

3.2 Artificial potential function
Artificial potential function J(||ρij ||) is a function of the

distance ||ρij || between spacecraft i and j. The potential

function consists of two parts, one is the attraction function

Ja(||ρij ||) to preserve connectivity and the other is the re-

pulsion function Jr(||ρij ||) to avoid collision. In particular,

J(||ρij ||) is defined as

J(||ρij ||) =Ja(||ρij ||) + Jr(||ρij ||)
=Ja

ij + Jr
ij (9)

There are some requirements and assumptions for each part

of potentials:

(i) J(||ρij ||) is differentiable with respect to ||ρij || ∈
[δ,Δ].

(ii) J(||ρij ||) is symmetric and satisfies

∇ρiJ(||ρij ||) = −∇ρjJ(||ρij ||) (10)

where ∇ρi
Jij denotes the gradient of Jij with respect

to ρi.
(iii) Artificial function J(||ρij ||) attains its unique mini-

mum when (||ρij ||) equals the desired distance dij , that

is

∇ρi
J(||ρij ||) = 0, if and only if ||ρij || = dij . (11)

(iv) Attraction function Ja(||ρij ||) is a monotonically

increasing function with respect to ||ρij ||, and

Ja(||ρij ||) → ∞ as ||ρij || → Δ.

(v) Repulsion function Jr(||ρij ||) is a monotonically

decreasing function with respect to ||ρij ||, and

Jr(||ρij ||) → ∞ as ||ρij || → δ.

(vi) J(||ρij ||) → ∞ as ||ρij || → Δ and ||ρij || → δ.

An example of attraction function and repulsion function is

given as

Ja
ij = Ja(||ρij ||) =

{
(||ρij ||2−||dij ||2)2
(Δ2−||ρij ||2)2 , if (i, j) ∈ E(t)

0, otherwise.

Jr
ij = Jr(||ρij ||) =

{
(||ρij ||2−||dij ||2)2

(||ρij ||2−δ2)2 , if (i, j) ∈ E(t)

0, otherwise.

(12)

Remark 2. The repulsion function provides a repulsive

force for any two spacecraft if their distance is in (δ, dij ]. On

the other hand, the attraction function provides an attractive

force for two spacecraft if their distance is in [dij ,Δ).

3.3 The control scheme
The control input in Eq. (1) is specified as

fi =Kf

N∑
j=1

aij(t)(vj − vi)−Kp

N∑
j �=i
j=1

aij(t)∇ρi
Jij + m̂iFi

˙̂mi =− αvT
i Fi

(13)

where m̂i is the estimation of mi, m̃i = mi − m̂i, α is a

positive constant, and Fi is defined as

Fi = − 1

mi
(Diρi + ni), (14)

which is independent of mi.

8267



Theorem 1. Consider a system of N spacecraft with dynam-
ics Eq. (1) and Assumption 1-4, each steered by protocol Eq.
(13). Assume that the initial graph G(0) is connected. Then,
the following hold:

(i) G(t) is connected for all t > 0.
(ii) There are no collisions between any two spacecraft.

(iii) ||ρij || → dij as t → ∞ for all (i, j) ∈ E .
(iv) All spacecraft asymptotically converge to equal veloc-

ity.

Proof. Suppose that G(t) switches at time tk(k = 1, 2, . . .),
otherwise G(t) is a fixed graph in each time interval

[tk−1, tk]. Define a Lyapunov function

V (t) =
1

2

N∑
i=1

miv
T
i vi +

Kp

2

N∑
i=1

N∑
j �=i

aijJij +
1

2α

N∑
i=1

m̃2
i

(15)

Since G(0) is connected and no collisions have happened

at time t0, the definition of V (t) implies that V (t) is finite at

t = 0.

Taking the derivative of Eq. (15) in [t0, t1] and substitut-

ing Eq. (1), (13) and (14) yields

V̇ (t) =
N∑
i=1

miv
T
i v̇i +

Kp

2

N∑
i=1

N∑
j �=i

aij(t)J̇ij −
N∑
i=1

1

α
m̃i

˙̂mi

=

N∑
i=1

vT
i

⎡
⎣Civi +Diρi + ni +Kf

N∑
j �=i

aij(t)(vj − vi)

−Kp

N∑
j �=i

aij(t)∇ρi
Jij + m̂iFi

⎤
⎦+

N∑
i=1

m̃iv
T
i Fi

+
Kp

2

N∑
i=1

N∑
j �=i

aij(t)
[
∇T

ρi
Jijρ̇i +∇T

ρj
Jijρ̇j

]

=Kf

N∑
i=1

N∑
j �=i

aij(t)v
T
i (vj − vi)

=Kf

N∑
i=1

N∑
j �=i

aij(t)(−vT
i vi + vT

i vj)

=−Kfv
T [L(t)⊗ IN ]v

(16)

where v = [vT
1 ,v

T
2 , . . . ,v

T
N ]T denotes the vector consist by

all spacecraft’s velocity. The equation
∑N

i=1 v
T
i Cvi = 0 is

used in Eq. (16).

According to Lemma 1, L(t) is positive semi-definite, and

then V̇ (t) ≤ 0 in [t0, t1]. It dictates that V (t) ≤ V (0) for

t ∈ [t0, t1]. Without loss of generality, assume that m1 new

links are added to the dynamic communication graph at time

t1. Clearly, 0 < m1 < M and M = (N−1)(N−2)
2 , thus

V (t1) < V0+m1(J(||Δ−ε||)+J(||δ+ε||) < Vmax, where

Vmax = 1
2

∑N
i=1 mivi(0)

T vi(0) +
N(N−1)

2 (J(||Δ − ε||) +
J(||δ+ε||)+∑N

i=1
1
2αm̃i(0)

2. Similar to the aforementioned

analysis, the time derivative of V (t) in [tk−1, tk] is

V̇ (t) = −vT [L(t)⊗ IN ]v ≤ 0 (17)

which implies that

V (t) ≤ V (tk−1) < Vmax for t ∈ [tk−1, tk] , k = 1, 2, . . . .
(18)

From the definition of the potential function, one has

J(t) < V (t) < J(Δ) and J(t) < V (t) < J(δ). This

guarantee that J(t) is finite for all t > 0 and this implies

no edge-distance will tend to Δ and δ for t > 0. Therefore,

no existing edges will be lost and no collisions will happen

between any two spacecraft. Since G(0) is connected and

no edges in E(0) will be lost, G(t) will be connected for all

t ≥ 0.

From V (t) ≤ Vmax, one can get vT
i vi ≤ 2Vmax

mi
and vi

is bounded. Thus, V̇ is bounded and then V̈ is bounded too.

Using Barbalat’s lemma one has limt→∞ V̇ = 0. From (16),

we known that V̇ = 0 if and only if v1 = v2 = · · · = vN ,

which implies that all spacecraft asymptotically converge to

the same velocity.

The property (iii) of artificial function implies that

J(||ρij ||) attains its unique minimum when (||ρij ||) equals

the desired distance dij . Thus, if edge (i, j) ∈ E , ||ρij || →
dij as t → ∞. With Assumption 3, one can get that

||ρij || → dij as t → ∞ for all (i, j) ∈ E . �
Remark 3. It is important to note that the addition of ε in

Eq. (6) is to avoid artificial function J to be infinite. More

precisely, it ensures the control input will be finite.

Remark 4. In literature [13], the control law ensures the

distance between any two agents is only possible to decrease.

However, this property can not been provided in this paper

as the potential function contains the repulsion function as

well as the attraction function.

4 Simulations

To demonstrate the effectiveness of the proposed control

in Eqs. (13), the detailed responses are numerically simu-

lated using the set of governing equation Eqs. (1) in con-

junction with the potential function in Eqs. (12).

For the numerical examples given in this section, the pa-

rameters of reference orbit are provided in Table 1. It is as-

sumed that all components of a spacecraft can be wrapped

by a sphere with radius is 5m. In this case, one can easily

choose δ = 10m to satisfy the anti-collision requirement.

In addition, supposing the sensing radius of all spacecraft is

Δ = 120m, the masses of each spacecraft are m1 = 100kg,

m2 = 120kg, and m3 = 115kg, and the initial masses esti-

mation are set to m̂1 = m̂2 = m̂3 = 110kg.

Table 1: Parameters for the reference orbit

Orbital parameters Value

Eccentricity 0.02
Inclination 30◦

Longitude ascending node 45◦

Semi-major axis 7000km
Argument of perigee 30◦

Initial true anomaly 0◦

Gravitational constant 3.986× 1014(m3/s2)

The control and initialization parameters are given in Ta-

ble 2. From the table, one can compute the distance be-

tween all spacecraft at the initial time: ||ρ12|| = 25.45m,
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||ρ13|| = 84.9m, ||ρ12|| = 60m. Therefore, the initial graph

is a complete graph.

Table 2: Symbols used in simulations

Parameters Value

ρ1(0) [0, 30, 0]T m

ρ2(0) [0, 12, 0]T m

ρ3(0) [0,−30, 30]T m

vi(0) [0, 0, 0]T (m/s), for i = 1, 2, 3
dij 60m, for i, j = 1, 2, 3
wij 1, for i, j = 1, 2, 3
Kf 0.3
Kp 0.3
α 5

Figs. 2, 3 and 4 show the results of velocity errors, dis-

tance and control force without the connectivity preserving

strategy. Fig. 2 shows the velocity errors between the space-

craft in formation. It can be observed that the steady-state

errors of relative velocity are less than 10−3m/s. In Fig. 3,

the maximum value of ||ρ12|| and ||ρ13|| are around 169.3m
and 147.4m, respectively. These distances are larger that the

communication range so that spacecraft 1 lose communica-

tion with the other two spacecraft and the formation mission

cannot be completed. The control forces (described in the

body reference coordinate) are shown in Fig. 4.

In contrast, Figs. 5, 6 and 7 show the corresponding re-

sults of velocity errors, distance and control force with the

connectivity preserving strategy. Fig. 6 shows the distances

between the spacecraft in formation. It can be seen that af-

ter around 3000s, the distances between any two spacecraft

in formation are close to 60m, meeting the requirements of

forming specific configuration. In Fig. 6, the maximum dis-

tances between all spacecraft decrease to about 110m, which

is smaller than the communication range. So the communi-

cation graph is connected during all times of the formation

missions. In addition, the distances between any two space-

craft in formation are larger than 10m, there is no collisions

between any spacecraft. Therefore, no collision occurs and

no communication links will be lost during SFF. The con-

trol forces (described in the body reference coordinate) are

shown in Fig. 7.

This comparison shows that the attraction potential func-

tion can ensure that the distance between any two spacecraft

will smaller than Δ if they have communication links be-

tween each other. More specifically, the connectivity of the

communication graph is preserved and then all spacecraft

will converge to the given configuration through this con-

nected graph.

5 Conclusions

In the paper, the effect of relative distance on communi-

cation graph and collision avoidances between spacecraft in

SFF are investigated. The design philosophy is to construct

an artificial potential function, which including the attrac-

tion part and repulsion part. The uncertainty of the mass

of spacecraft is also considered. The proposed controller

guarantees the connectivity of communication graph dur-

ing SFF. Therefore, each spacecraft can transfer their states

to all other spacecraft through the connected graph. This

property is quite significant for distributed SFF. In future

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0

0.5

1

1.5

V
el

oc
ity

 (
m

/s
)

||v
1
-v

2
||

||v
1
-v

3
||

||v
2
-v

3
||

7906.5 7907 7907.5 7908

7

8

9

10-4

Fig. 2: Norm of velocity errors

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0

20

40

60

80

100

120

140

160

180

D
is

ta
nc

e 
(m

)

||
12

||

||
13

||

||
23

||

Fig. 3: Distance

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0

5

10

15

20

25

F
or

ce
 (

N
)

||f
1
||

||f
2
||

||f
3
||

Fig. 4: Norm of control force

8269



0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0

0.5

1

1.5

V
el

oc
ity

 (
m

/s
)

||v
1
-v

2
||

||v
1
-v

3
||

||v
2
-v

3
||

5941 5942 5943 5944 5945

-4

-2

0

2

4
10-4

Fig. 5: Norm of velocity errors (Δ = 120m).

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0

20

40

60

80

100

120

D
is

ta
nc

e 
(m

)

||
12

||

||
13

||

||
23

||

Fig. 6: Distance (Δ = 120m).

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0

5

10

15

20

25

F
or

ce
 (

N
)

||f
1
||

||f
2
||

||f
3
||

Fig. 7: Norm of control force (Δ = 120m).

work, the extension of the presented control algorithm us-

ing non-certainty equivalence for formation problem can be

planned. Another direction involves considering the connec-

tivity maintenance of a directed graph for SFF.
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