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Abstract

This paper addresses connectivity preservation and collision avoidance problem of spacecraft formation flying with multiple obstacles
and parametric uncertainties under a proximity graph. In the proximity graph, each spacecraft can only get the states of the neighbor
spacecraft within its sensing region. Connectivity preservation of a graph means that the connectivity of the graph should be preserved at
all times during spacecraft formation flying. We consider two cases: (i) the obstacles are static, and (ii) the obstacles are dynamic. In the
first case, a distributed continuous control algorithm based on artificial potential function and equivalent certainty principle is proposed
to account for the unknown parameters and the static obstacles. In the second case, a sliding surface combined with a distributed adap-
tive control algorithm is proposed to tackle the influence of the dynamic obstacles and the unknown parameters at the same time. With
the distributed control algorithms, the desired formation configuration can be achieved while the connectivity of the graph is preserved
and the collisions between the spacecraft and the obstacles are avoided. Numerical simulations are presented to illustrate the theoretical
results.
� 2020 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Spacecraft formation flying (SFF) has received consider-
able attention due to its apparent advantages, such as flex-
ibility, reliability, robustness and low fuel consumption
(Liu and Zhang, 2018). These advantages make SFF a
competitive method to implement space missions, including
synthetic aperture radars, gravity field measurement, space-
based interferometers and distributed satellite architecture
(Di Mauro et al., 2017; Bandyopadhyay et al., 2016).
One of the critical issues for SFF is to design distributed
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control algorithms to achieve formation reconfiguration
or formation maintenance.

Therefore, each spacecraft acts in a distributedmanner to
perform the global tasks cooperatively with only local infor-
mation from its neighbors to increase the flexibility and
robustness of SFF. Most current literature assume the com-
munication graph is connected at any time (Zou et al., 2016;
Yue et al., 2019). However, the connectivity of the commu-
nication network is directly related to the relative distances
between the spacecraft, which is constrained by the commu-
nication distance between the spacecraft. Therefore, a more
practical question is how to preserve the connectivity of the
network at all times (Knorn et al., 2016).

The connectivity preservation problem has been widely
investigated in multi-agent systems and mobile robotic
systems in the past twe decades (Zavlanos and Pappas,
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2007; Qu et al., 2014; Stephan et al., 2017; Deng et al.,
2018). The methods to settle this problem can be divided
into two categories: the optimization-based methods
(Kim and Mesbahi, 2006; De Gennaro and Jadbabaie,
2006) and the artificial potential function (APF) based
methods (Ji and Egerstedt, 2007; Cao and Ren, 2012).
The positive of algebraic connectivity of a graph (the sec-
ond smallest eigenvalue of the Laplacian matrix of a graph)
is a typical metric to indicate that the graph is connected.
The optimization-based method fulfills connectivity preser-
vation by maximizing algebraic connectivity. A
optimization-based method using algebraic connectivity is
a proposed in (Kim and Mesbahi, 2006). However, this
method is centralized and requires the global information
about the communication graph. Then, literature
(Sabattini et al., 2015) developed this method to a decen-
tralized method by estimating the algebraic connectivity
of the graph. The global property of optimization-based
method led it can be used to add or delete communication
links in a graph. But, the estimation of algebraic connectiv-
ity is time-consuming and difficult to meet real-time
requirement. Literature (Ji and Egerstedt, 2007) proposed
a distributed coordination controller for the connectivity
preservation of multi-agent systems by designing appropri-
ate weights of a potential function to different agents.
Then, this method was developed to the multi-robot system
and performed with a bounded control law in (Gasparri
et al., 2017). More information about connectivity preser-
vation control of multi-agent systems can be found in
(Zavlanos et al., 2011; Dong and Huang, 2017; Lu, 2018)
and reference therein.

Recently, some studies have begun to consider the con-
nectivity preservation control of SFF. Literature (Xue
et al., 2019) provided a potential function based control
method to avoid the collisions between spacecraft and pre-
serve the connectivity of communication networks in the
presence of parameter uncertainties. Literature (Ghapani
et al., 2016) employed equivalent certainty principle to
design adaptive connectivity preservation control laws for
leader–follower Lagrange systems in the presence of
parameter uncertainties. The authors presented simulations
of SFF with spacecraft relative dynamics to illustrate the
effectiveness of the adaptive control laws. However, the
above results didn’t consider the impact of space obstacles.

Debris in space and other spacecraft might threaten the
spacecraft in formation. Therefore, it is necessary to con-
sider the collision avoidances between the spacecraft and
the obstacles. Collision avoidance methods for SFF include
the behavior-based methods (Balch and Arkin, 1998;
Schlanbusch et al., 2011; Zhou et al., 2018) and the APF
based methods (Huang et al., 2017; Hu et al., 2015). The
null-space based method adopted in (Schlanbusch et al.,
2011; Zhou et al., 2018) is a typical behavior-based cooper-
ative formation control method. Artificial potential func-
tion is widely used in SFF because it is easy to integrate
with the controller design. Literature (Huang et al., 2017)
investigated under actuated collision avoidance for space-
craft formation reconfiguration in circular orbits. Refer-
ence (Hu et al., 2015) proposed a couple of control laws
based on sliding mode and equivalent certainty principle
for leader–follower SFF in the presence of obstacle. How-
ever, the method is not distributed as the authors assumed
that each spacecraft can obtain the states of all spacecraft
and the obstacle.

Nevertheless, to the best of the authors’ knowledge, few
studies consider the connectivity preservation of the com-
munication graph in SFF. Furthermore, the problem of
combining obstacle avoidance and connectivity preserva-
tion with spacecraft formation reconfiguration poses con-
siderable complexity and difficulty, and it remains an
open issue. Obstacle avoidance creates a potential threat
to disconnect the communication network due to the repul-
sive force generated between the spacecraft and the obsta-
cles. Inspired by the previous discussions, we focus on the
distributed connectivity preservation and collision avoid-
ance of SFF in the presence of multiple obstacles. Firstly,
the communication graph between the spacecraft is con-
structed dynamically according to the relative distances
between all spacecraft. Besides, two artificial potential
functions, including formation potential function and
obstacle avoidance potential function are presented. Two
control laws based on the artificial potential functions
and certainty equivalence principle are designed for SFF
in the presence of static and dynamic obstacles. Moreover,
the sliding mode technique is used to tackle the dynamic
obstacles. It is shown that the control laws can preserve
the connectivity of the graph and avoid the collisions
between the spacecraft and the obstacles.

The paper is organized as follows: Section 2 states the
relative dynamics of spacecraft formation system and some
notions about algebraic graph theory. The potential func-
tions and controller design are proposed in Section 3.
Numerical simulations are presented in Section 4 to
demonstrate various features and effectiveness of the pro-
posed control methods. Finally, the paper is completed
with some concluding comments in Section 5.

2. Background

In this paper, we mainly study how to preserve the con-
nectivity of the communication graph and avoid collisions
between the spacecraft and obstacles during formation
reconfiguration. This section provides the relative dynam-
ics of the spacecraft and some notions of algebraic graph
theory.

2.1. Spacecraft relative dynamics

All spacecraft are assumed to be rigid and the reference
spacecraft transits in an elliptical orbit. The reference
frame, denoted by F r, has its origin at the centroid of
the reference spacecraft. The X r axis points from the earth
center to the reference spacecraft, the Zr axis is perpendic-
ular to the reference orbit plane, and the Y r axis can be
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obtained according to the right-hand rule. Consider a

system with N spacecraft denoted by pi ¼ pix; piy ; piz
� �>

;

i ¼ 1; . . . ;N , and M obstacles in workspace denoted by

pok ¼ pokx; p
o
ky ; p

o
kz

h i>
; k ¼ 1; . . . ;M . Then, the relative

dynamics of spacecraft can be described by (Kristiansen
and Nicklasson, 2009)

mi€pi ¼ miC i _pi þ migi pið Þ þ f i; ð1Þ
where

C i ¼ 2 _h0

0 1 0

�1 0 0

0 0 0

2
64

3
75;

gi pið Þ ¼ l
r3i
pi �

_h20
€h0 0

�€h0 _h20 0

0 0 0

2
64

3
75pi � l

� r0
r3i
þ 1

r2
0

0

0

2
64

3
75;

and mi is the mass of the i-th spacecraft, f i is the control
force vector of the i-th spacecraft, h0 is the true anomaly
of the reference spacecraft, l is the gravitational constant
of the Earth, r0 denotes the radial distance of the origin
of the reference frame to the Earth’s center,

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 þ pixð Þ2 þ p2iy þ p2iz

q
is the distance between the

Earth’s center and the centroid of the i-th spacecraft.
Without special explanation, we use the notation

x ¼ x>
1 ; . . . ;

>
N

� �> 2 RnN , where xi 2 Rn. For example,

p ¼ p>1 ; . . . ; p
>
N

� �> 2 R3N ; _p ¼ _p>1 ; . . . ; _p
>
N

� �> 2 R3N and

po ¼ po1
� �>

; . . . ; poM
� �>h i>

2 R3M .

Assumption 1. Since the change of mass mi of spacecraft is
very small, it is assumed that mi is constant but unknown.
2.2. Algebraic graph theory

The proximity graph between the spacecraft is described
by graph theory in this paper. This subsection presents
some notions of algebraic graph theory (Mesbahi and
Egerstedt, 2010). A weighted graph G is an ordered triple
V;E;A Gð Þð Þ consisting of a vertex set V ¼ 1; 2; . . .Nf g,
an edge set E � V � V, and a weighted adjacency matrix

A ¼ aij
� � 2 RN�N . The edge i; jð Þ 2 E if and only if the ver-

tex j can get information from vertex i, and i is called a
neighbor of j. Graph G is said to be undirected if for any
edge i; jð Þ 2 E means j; ið Þ 2 E. The set of neighbors of
the j-th spacecraft is denoted by N j ¼ i 2 V i; jð Þ 2 Ef g.
A path of G is given by a sequence of edges
i1; i2ð Þ; i2; i3ð Þ; . . . such that for k ¼ 1; 2; . . ., the edges
ik; ikþ1ð Þ 2 E. The graph G is called a connected graph if
there is a path for every pair of vertices in V. The adjacency
matrix A Gð Þ is defined as: aij ¼ 1 if i; jð Þ 2 E Gð Þ, otherwise
aij ¼ 0. Another important matrix of graph G is the Lapla-

cian matrix L ¼ lij
� � 2 RN�N , which is defined as: if

i ¼ j; lij ¼
PN

j¼1aij, otherwise lij ¼ �aij.
Lemma 1. The Laplacian matrix L is symmetric and positive

semidefinite if the graph G is undirected and connected

(Mesbahi and Egerstedt, 2010).
2.3. The dynamic graph model

In this paper, it is assumed that the neighbor relation-
ship between the spacecraft and obstacles are based on
their relative distances. Suppose all spacecraft have the
same sensing distance D. The collision distance between
spacecraft i and j is denoted as dij. The adjacency matrix
A Gð Þ between the spacecraft is generated dynamically
according to the current distances as follows:

aij tð Þ ¼ 1; if jjpij tð Þjj 2 dij;D
� �

; i; j 2 Vg;
0; otherwise;

�
ð2Þ

where pij tð Þ ¼ pi tð Þ � pj tð Þ; aij ¼ 1 indicates spacecraft i can

get the states of spacecraft j; aij ¼ 0 otherwise. The defini-
tion of adjacency matrix in Eq. (2) indicates that graph G
is undirected.

Suppose the collision distance between spacecraft i and
obstacle k is doik. Then, the adjacency matrix

B ¼ bik½ � 2 RN�M between the spacecraft and the obstacles
is defined as

bik tð Þ ¼ 1; if jjpoik tð Þjj 2 doik;D
� �

; i 2 V; k 2 Vog;
0; otherwise;

�
ð3Þ

where poik tð Þ ¼ pi tð Þ � pok tð Þ; bik tð Þ ¼ 1 means spacecraft i

can sensing obstacle k; bik tð Þ ¼ 0 otherwise.
Before moving on, we need the following reasonable

assumptions.

Assumption 2 (Initial formation). Suppose the initial graph
G 0ð Þ generated according to Eq. (2) is connected and no
collisions have happened at the initial time.
Definition 1 (Reachable). The desired configuration pd is
reachable if the following conditions hold (Li et al., 2013)

dij < D; 8i 2 1; . . . ;Nf g; j 2 N i;

where dij ¼ jjpdi � pdj jj denotes the desired distance between

spacecraft i and j.

Assumption 3 (Desired formation). It is assumed that the
desired formation pd is reachable.

Assumption 4 (Obstacle). The obstacles only affect the
spacecraft in finite time and their velocities are bounded.
3. Control law design

3.1. Artificial potential function

To preserve the connectivity of the communication
graph and avoid the collisions between spacecraft and
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obstacles simultaneously, the artificial function in this
paper is more complicated than traditional artificial poten-
tial function. The artificial potential function consists of

two parts: the formation potential function wf jjpijjj
� �

and

the obstacle avoidance potential function wo jjpoikjj
� �

. The

formation potential function wf jjpijjj
� �

is a differentiable

nonnegative function of jjpijjj. It is defined as follows:

wf jjpijjj
� � ¼

wr jjpijjj
� �

; if jjpij tð Þjj 2 dij þ �; dij

� �
;

wa jjpijjj
� �

; if jjpij 0ð Þjj 2 dij;D� �
� �

;

wd jjpijjj
� �

; if jjpij 0ð Þjj R dij;D� �
� �

andjjpij tð Þjj 2 dij;D� �
� �

;

wd D� �ð Þ; if jjpij 0ð Þjj 2 D;1½ Þ;

8>>>>>>><
>>>>>>>:

ð4Þ

where wr jjpijjj
� �

is the repulsion function to avoid collisions

between the spacecraft, wa jjpijjj
� �

is the attraction function

to preserve the connectivity of graph and wd jjpijjj
� �

is the

desired formation function to reach the desired configura-
tion. These functions have the following properties:

1. wf jjpijjj
� �

is symmetric and satisfies

rpiw
f jjpijjj
� � ¼ �rpjw

f jjpijjj
� �

;

where rpiw
f jjpijjj
� �

denotes the gradient of wf jjpijjj
� �

with respect to pi.

2. wr jjpijjj
� �

is monotonically decreasing with respect to

jjpijjj;wa jjpijjj
� �

and wd jjpijjj
� �

are monotonically

increasing with respect to jjpijjj.
3. All three potential functions attain their unique mini-

mum while jjpijjj ¼ dij and satisfy the following equation

wr jjdijjj
� � ¼ wa jjdijjj

� � ¼ wd jjdijjj
� �

.

4. wr jjpijjj
� �! 1 as jjpijjj ! dij, and wa jjpijjj

� �! 1 as

jjpijjj ! D.

According to the repulsion function wr jjpijjj
� �

, the

obstacle avoidance potential function wo jjpoikjj
� �

to avoid

collisions between the spacecraft and the obstacles can be
defined as follows:

wo jjpoikjj
� � ¼ wr jjpoikjj

� �
; if jjpoik tð Þjj 2 doik þ �; do

ik

� �
;

0; if jjpoik tð Þjj 2 do
ik;1

� �
;

(

ð5Þ

where do
ik denotes the reaction distance between spacecraft i

and obstacle k; do
ik < D. From the properties of wr jjpoikjj

� �
,

the potential function wo jjpoikjj
� �

satisfies

1. wo jjpoikjj
� �

is symmetric and satisfies

rpiw
o jjpoikjj
� � ¼ �rpok

wo jjpoikjj
� �

:

2. wo jjpoikjj
� �

is monotonically decreasing with respect to

jjpoikjj.
3. wo jjpoikjj

� �! 1 as jjpoikjj ! doik and wo jjpoikjj
� �! 0 as

jjpoikjj ! do
ik.

To simplify, the potential functions wf jjpijjj
� �

and

wo jjpoikjj
� �

are abbreviated as wf
ij and wo

ik in the following

part of this paper.

Remark 1. It is important to note that the addition term �
in Eqs. (4) and (5) are used to avoid artificial potential

function wf
ij and wo

ik to be infinite. More precisely, it ensures

the control inputs will be finite.

Remark 2. It is noted from the definition of wf
ij in Eq. 4

that only the initial links of the G are preserved. However,
the new links constructed during formation flying might be
broken if these links conflict with other objects, such as col-
lision avoidance with obstacles. This design makes the for-
mation more flexible and can preserve the connectivity of
the graph.
3.2. Controller design for static obstacles

In this section, we consider the case while the obstacles
are static. The control input for Eq. (1) is specified as

f i ¼ Kc

XN
j¼1

aij tð Þ _pj � _pi
� ��rpiWþ m̂iY i � Kv _pi; ð6Þ

_̂mi ¼ �a _p>i Y i; ð7Þ
where m̂i is the estimation of mi; a;Kc and Kv are positive
constant, Y i is defined as

Y i ¼ �C i _pi � gi pið Þ; ð8Þ
which is independent of mi, and W is defined as

W ¼ Kf

XN
i¼1

XN
j¼1

aijw
f
ij þ Ko

XN
i¼1

XM
k¼1

bikw
o
ik; ð9Þ

where Kf and Ko are positive constant.

Theorem 1. Consider the system of N spacecraft with

dynamics Eq. (1) and M static obstacles, with Assumption

1–4 and the designed control law (6 and 7), the desired
formation is achieved, the graph G tð Þ is connected at all

times, and no collisions occur between any spacecraft and

obstacles.

Proof. Consider the following Lyapunov function

V 1 tð Þ ¼ 1

2

XN
i¼1

mi _p
>
i _pi þ

1

2a

XN
i¼1

~m2
i þW; ð10Þ

where ~mi ¼ mi � m̂i denotes the mass estimation error. As
G 0ð Þ is connected and no collisions have happened at time
t0. Thus, V 0ð Þ in Eq. (10) is finite.
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Taking the derivative of Eq. (10) yields

_V 1 tð Þ ¼
XN
i¼1

mi _p
>
i €pi �

XN
i¼1

1

a
~mi

_̂mi þ
XN
i¼1

rpiW
� �>

_pi

þ
XM
k¼1

rpok
W

� 	>
_pok : ð11Þ

Using Eq. (1), (6), (7)the fact _pok ¼ 0, Eq. (11) can be
written as

_V 1 tð Þ ¼
XN
i¼1

_p>i miC i _pi þ migi pið Þ þ f ið Þ �
XN
i¼1

1

a
~mi

_̂mi

þ
XN
i¼1

rpiW
� �>

_pi

¼
XN
i¼1

_p>i �miY i þ Kc

XN
j¼1

aij tð Þ _pj � _pi
� ��rpiWþ m̂iY i � Kv _pi

 !

þ
XN
i¼1

~mi _p
>
i Y i þ

XN
i¼1

rpiW
� �>

_pi

¼
XN
i¼1

_p>i Kc

XN
j¼1

aij tð Þ _pj � _pi
� ��rpiW� Kv _pi

 !

þ
XN
i¼1

rpiW
� �>

_pi

¼ Kc

XN
i¼1

XN
j¼1

aij tð Þ _p>i _pj � _pi
� �� Kv

XN
i¼1

_p>i _pi

¼ �Kc _p
> L tð Þ � I3½ � _p� Kv _p

> _p;

ð12Þ
where _p is a column stack vector of _pi; i ¼ 1; . . . ;N .

Suppose that G tð Þ switches at time
tk k ¼ 0; 1; . . . ; t0 ¼ 0ð Þ, otherwise G tð Þ is a fixed graph in
each time interval tk�1; tk½ Þ. According to Lemma 1, L tð Þ is
positive semi-definite for t 2 t0; t1½ Þ. Thus, _V 1 tð Þ 6 0 and
V 1 tð Þ 6 V 1 0ð Þ for t 2 t0; t1½ Þ. Since the first two items
of V 1 are continuous and there are at most N N � 1ð Þ
links between spacecraft and MN links between
the spacecraft and the obstacles. Thus, it is obtained

that V 1 t1ð Þ < V 1 ¼ V 1 0ð Þ þWmax, where Wmax ¼
KfN N � 1ð Þ wf D� �ð Þ þ wf dijþ

��
�Þ� þ KoMNwo doij þ �

� 	
.

From the definition of W, it is concluded that V 1 t1ð Þ is
bounded. Similar to the aforementioned analysis, the time
derivative of V 1 tð Þ at t 2 tk�1; tk½ Þ satisfies
_V 1 tð Þ ¼ �Kc _p

> L tð Þ � I3½ � _p� Kv _p
> _p 6 0; ð13Þ

which indicates that

V 1 tð Þ 6 V 1 tk�1ð Þ < V 1; 8t 2 tk�1; tk½ �; k ¼ 1; 2; . . . : ð14Þ
In conclusion, _V 1 tð Þ 6 0 and V 1 tð Þ is bounded, which

further indicates _pi; ~mi;w
f
ij;w

o
ik are bounded. The bounded-

ness of wf
ij and wo

ik ensures that no collision happens and no

edge in the graph G 0ð Þ will be lost. Furthermore, the

inequality _V 1 tð Þ 6 �Kv _p
> _p 6 0 obviously yields that

_pi ! 0 as t ! 1. Therefore, we known that the velocities
of the spacecraft asymptotically converge to zero. Note
that the boundedness ofrpiW and Y i implies f i is bounded,

which in turn implies that €pi is bounded. Overall, €V 1 is
bounded according to Eq. (13). Using Barbalat’s lemma

one has limt!1 _V 1 ¼ 0. From the definition of V 1, we have
rpiW ! 0 as t ! 1. Assumption 4 indicates that
rpiW

o
ij ! 0 as t ! 1. The properties of artificial potential

function ensure that wij attains its unique minimum while

jjpijjj ¼ dij. Thus, rpiW
f
ij ! 0 as t ! 1, and one can get

that jjpijjj ! dij as t ! 1 for all i; jð Þ 2 E. h

Remark 3. In literature (Ji and Egerstedt, 2007), the con-
trol law ensures the distance between any two agents will
only decrease. However, this property can not be provided
in this paper as the potential function contains the repul-
sive function as well as the attractive function.
3.3. Controller design for dynamic obstacles

In the previous subsection, the obstacles are assumed to
be static. However, this assumption is hard to be satisfied
with practical applications. In this subsection, we consider
the case where the obstacles are dynamic. The spacecraft
can only access the states of an obstacle while the obstacle
is within the sensing region of the spacecraft. Defining the
following auxiliary variable

si ¼ _pi � v̂i; ð15Þ
where

v̂i ¼ �rpiWþ Ko

XM
k¼1

bikwik; ð16Þ

with

wik;q ¼
rpiw

o
ikð Þq _pokq

rpiWð Þq ; if rpiw
o
ik

� �
q
– 0;

0; otherwise;

8<
: q ¼ x; y; z; ð17Þ

where rpiw
o
ik

� �
q
and _pokq is the component of rpiw

o
ik and _pok

in direction q.

Remark 4. It is noted that if the component rpiw
o
ik

� �
q

equal to zero, the corresponding denominators in wik;q

equal to zero. To prevent this case, the denominators are
modified to a small positive constant m if it equal to zero.
However, this case rarely happens as rpiW contains rpiw

o

as an item.

Define a low-pass filter (Hu et al., 2015; Gazi, 2005)

k _hi ¼ �hi þ v̂i; ð18Þ
where k is a small constant. By choosing appropriate value
of k similar to (Haskara, 1998), we can obtain

hi � v̂i½ �eq; ð19Þ
where the subscript ‘‘eq” represents the equivalent value of
wi Then, one can obtain
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mi
d

dt
v̂i










 ¼ mijj _hijj 6 ci; ð20Þ

where ci is a positive constant.
Then, the following distributed control is proposed

f i ¼ �Kc

XN
j¼0

aij si � sj
� �� Kssi � bisgn sið Þ � rpiWþ m̂iY i;

ð21Þ
_̂mi ¼ �as>i Y i; ð22Þ

where Kc;Ks and bi are positive constant, Y i and W are
defined as in Subsection 3.2.

Theorem 2. Consider a system of N spacecraft governed by

Eq. (1) and M dynamic obstacles, with Assumption 1–4 and

the designed control law 21 and 22, if bi > ci, then the desired
formation is achieved, the graph G tð Þ is connected for at all

times, and no collisions occur between the spacecraft and

obstacles.
Proof. Consider the following Lyapunov function
candidate:

V 2 tð Þ ¼ 1

2

XN
i¼1

mis
>
i si þ

1

2a

XN
i¼1

~m2
i þW: ð23Þ

Taking the derivative of (23) obtains

_V 2 tð Þ ¼
XN
i¼1

s>i mi _si � 1

a

XN
i¼1

~mi
_̂mi þ

XN
i¼1

rpiW
� �>

_pi

þ
XM
i¼1

rpok
W

� 	>
_pok : ð24Þ

Substituting Eqs. (1), (15), (21) and (22), one can obtains

_V 2 tð Þ ¼
XN
i¼1

s>i mi€pi � mi
_̂vi

h i
þ
XN
i¼1

~mis
>
i Y i þ

XN
i¼1

rpiW
� �>

si þ v̂i½ �

þ
XM
i¼1

rpok
W

� 	>
_pok

¼
XN
i¼1

s>i �~miY i � Kc

XN
j¼0

aij si � sj
� �� Kssi � bisgn sið Þ � rpiW� mi

_̂vi

" #

þ
XN
i¼1

~mis
>
i Y i þ

XN
i¼1

rpiW
� �>

si �rpiWþ Ko

XM
k¼1

bikwik

" #

þ
XM
i¼1

rpok
W

� 	>
_pok

¼
XN
i¼1

s>i �Kc

XN
j¼0

aij si � sj
� �� Kssi � bisgn sið Þ � mi

_̂vi

" #

�
XN
i¼1

rpiW
� �>rpiWþ Ko

XN
i¼1

XM
k¼1

bik rpiW
� �>

wik

þ
XM
i¼1

rpok
W

� 	>
_pok :

ð25Þ
Pre-multiplying both sides of Eq. (17) by rpiW

� �>
, one

can obtain
rpiW
� �>

wik ¼ rpiw
o
ik

� �
_pok ¼ � rpok

wo
ik

� 	
_pok : ð26Þ

Then Eq. (25) can be simplified as

_V 2 tð Þ ¼ �
XN
i¼1

rpiW
� �>rpiW� Kcs

> L tð Þ � I3½ �s

� Kss
>s�

XN
i¼1

s>i bisgn sið Þ þ mi
_̂vi

h i
; ð27Þ

where s is a column stack vector of si; i ¼ 1; . . . ;N . In view
of Eq. (20), it follows that

_V 2 tð Þ 6 �
XN
i¼1

rpiW
� �>rpiW� Kcs

> L tð Þ � I3½ �s� Kss
>s:

ð28Þ
Similar to the proof of Theorem 1, one can obtain

_V 2 tð Þ 6 0 and V 2 tð Þ is bounded. Thus, si; ~mi;w
f
ij;w

o
ik are

bounded. Therefore, there is no collision between the
spacecraft and the connectivity of graph G 0ð Þ is

preserved. Furthermore, the inequality _V 2 tð Þ 6
�PN

i¼1 rpiW
� �>rpiW� Kss

>s obviously yields that

si ! 0;rpiW ! 0 as t ! 1. Note that

_pi ¼ si �rpiWþ Ko
PM

k¼1bikwik. With Assumption 4,

Ko
PM

k¼1bikwik ¼ 0 as t ! 1. Overall, _pi ! 0 as t ! 1,
i.e., the velocities of all spacecraft converge to zero. The
fact rpiW ! 0 and Assumption 4 indicate that

rpiW
f
ij ! 0 as t ! 1. Combining with the properties of

artificial function, the desired formation is achieved, i.e.,
jjpijjj ! dij as t ! 1 for all i; jð Þ 2 E. h

Remark 5. When the obstacles are dynamic, the controller
design in Eq. (21) must involve the velocities of the obsta-
cles, which cannot be eliminated directly. By introducing
the velocity terms of the obstacles in the design of sliding
manifolds in Eq. (15), the velocity items are canceled out
in Eq. (25). Thus, the stability of the closed-loop system
can be guaranteed.
4. Simulations

In this section, the comparisons between the proposed
controller and a controller without considering connectiv-
ity preservation are presented in numerical simulations to
demonstrate the effectiveness and superiority of the pro-
posed adaptive control method. In the simulations, the
potential function is chosen as:

wr
ij ¼ kr pij



 

� dij
� �� dij ln pij



 

� dij
� ��

þdij ln dij � dij
� �� dij � dij

� ��
;

wa
ij ¼ ka D� pij



 

� �� dij ln D� pij


 

� ��

þdij ln D� dij

� �� D� dij

� ��
;

wd
ij ¼ kd � kd cos p pij



 

� dij

� �
= D� dij

� �� �
:

ð29Þ

MichealXue
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Their derivatives are

rpiw
r
ij ¼ kr

pijk k�dijð Þ pi�pjð Þ
pijk k pijk k�dijð Þ ;

rpiw
a
ij ¼ ka

pijk k�dijð Þ pi�pjð Þ
pijk k D� pijk kð Þ ;

rpiw
d
ij ¼ kdp sin

p pijk k�dijð Þ
D�dijð Þ

� �
pi�pjð Þ

pijk k D�dijð Þ :

ð30Þ

It is easy to verify that the above functions satisfy the prop-
erties of potential functions.

The parameters of the reference orbit are provided in
Table 1. It is assumed that all components of a spacecraft
or an obstacle can be wrapped by a sphere whose radius is
5 m. In this case, one can easily choose dij ¼ 10 m and
doik ¼ 10 m to satisfy the anti-collision requirement. The
reaction distance do

ik between spacecraft i and obstacle j is
given as 40 m. In addition, supposing the sensing radius
of all spacecraft is D ¼ 120 m. The masses of the spacecraft
are m1 ¼ 10 kg, m2 ¼ 11 kg, m3 ¼ 11:5 kg, and the initial
Table 1
Parameters for the reference orbit.

Orbital parameters Value

Eccentricity 0:02
Inclination 30�

Longitude ascending node 45�

Semi-major axis 6971 km
Argument of perigee 30�

Initial true anomaly 0�

Gravitational constant 3:986� 1014 m3=s2
� �

Table 2
Initial parameters of the spacecraft and obstacle

Parameters Value Parameters Value

p1 0ð Þ 50; 70; 0½ �>m po1 0ð Þ 60; 0; 0½ �>m
p2 0ð Þ 0; 0; 0½ �>m d12 60 m
p3 0ð Þ 50;�70; 0½ �>m d23 80 m
_pi 0ð Þ 2; 0; 0½ �> m=sð Þ d13 100 m

Fig. 1. The distances bet
masses estimation are set as m̂1 ¼ m̂2 ¼ m̂3 ¼ 10:5 kg. The
initial parameters of the spacecraft and the obstacle are
given in Table 2. From the table, it is easy to verify that
the initial configuration satisfies Assumptions 2–4. It is
assumed that the output forces are thrusters, and the max-
imum output force component described in the body refer-
ence is limited as 1 N.

The proposed methods are included in Eqs. (6), (7), (9),
(21), (22), (29) and (30), and the corresponding controller
taken from (Hu et al., 2015) is listed as follows

f i ¼ �csgn sið Þ � m̂iF i � Kdsi;
_̂mi ¼ asTi F i;

ð31Þ

where

F i ¼ 1
mi

Dipi þ C ivið Þ;
si ¼ _pi þ srpi J ;

J ¼ KF

Xn�1

i¼1

Xn
j>i

J ij pi � pj


 

� �þ KO

Xn
i¼1

J io pi � pok kð Þ:
ð32Þ

In the first case, spacecraft formation in the presence of
a static obstacle is simulated. Therefore, the velocity of the
obstacle is zero. The parameters in Eqs. (6) and (7) are
chosen as Kf ¼ 10;Ko ¼ 10;Kc ¼ 0:1;Kv ¼ 0:1; kr ¼ 0:2;
ka ¼ 0:05; kd ¼ 0:2; a ¼ 0:01. The parameters in Eqs. (31)
and (32) are set as KF ¼ 40;KO ¼ 40;Kd ¼ 0:1; a ¼ 0:5;
c ¼ 0:2; s ¼ 0:1.

Fig. 1 shows the distances between the spacecraft in for-
mation, where both controllers ensure the spacecraft reach
their desired distances. The red line represents the sensing
distance D and the blank line represents the collision dis-
tance d. The relative distances between any two spacecraft
in the formation are never less than 10 m, so that there is
no collision. As seen in the black boxes of Figs. 1a and
b, the distances jjp12jj and jjp23jj are always less than the
sensing distance in 1b, whereas the distances in 1a exceed
the sensing distance. This situation implies the communica-
tion graph in 1b is disconnected, which results in the for-
mation task can not be completed. For comparison, the
connectivity of graph in Fig. 1a is preserved and all space-
ween the spacecraft.
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craft can communicate with each other through this con-
nected graph. Figs. 2 and b show the distance between all
spacecraft and obstacle 1. Figs. 3 and 4 show the velocities
and control inputs of spacecraft with respect to time.

In this second case, spacecraft formation in the presence
of a dynamic obstacle is simulated. The obstacle is assumed
Fig. 2. The distances between the

Fig. 3. The velocity o

Fig. 4. The con
to carry out a circle with velocity _po1 ¼ 2 cos 0:01tð Þ;½
�2 sin 0:01tð Þ; 0�> m=sð Þ. The parameters Eqs. (21) and
(22) are chosen as Kf ¼ 50;Ko ¼ 50;Kc ¼ 0:1;Kv ¼ 0:1;
kr ¼ 0:2;ka ¼ 0:05;kd ¼ 0:05;a¼ 0:01;bi ¼ 0:01;k¼ 0:1. The
parameters in (31) and (32) are set as
KF ¼ 40;KO ¼ 20;Kd ¼ 0:1;a¼ 0:5;c¼ 0:2;s¼ 0:1.
spacecraft and the obstacle.

f the spacecraft.

trol inputs.
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Fig. 5 show the distances between the spacecraft
while Fig. 6 show the distance between the spacecraft
and the obstacle. As seen in the figures, the desired
formation are achieved and there is no collisions.
Fig. 5. The distances bet

Fig. 6. The distances between the

Fig. 7. The velocity o
However, the connectivity of graph in 5a is preserved
and that in 5b is not preserved. Figs. 7 and 8 show
the velocities and control inputs of spacecraft with
respect to time.
ween the spacecraft.

spacecraft and the obstacle.

f the spacecraft.



Fig. 8. The control inputs.
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5. Conclusions

In the paper, two control algorithms based on potential
functions and sliding manifolds are proposed to preserve
the connectivity of the communication network and avoid
the collisions for spacecraft formation flying in the pres-
ence of multiple obstacles. Compared with the current
results, our methods do not need the assumption of con-
nectivity of the graph during the SFF. The proposed con-
trol laws can automatically guarantee the connectivity at
all times if the graph is initially connected. Moreover, the
proposed control algorithms require only one-hop neigh-
bors information to achieve connectivity preservation, col-
lision avoidance, desired formation, and velocity matching
with each other. Numerical simulations have also been pre-
sented to illustrate the theoretical results.
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